Nuclear physics of stars / Christian Iliadis.

Published
  • Weinheim : Wiley-VCH Verlag c2007
Physical description
1 online resource (680 p.)
ISBN
  • 1-281-76455-8
  • 9786611764555
  • 3-527-61875-9
  • 3-527-61876-7
Notes
  • Description based upon print version of record.
  • Includes bibliographical references (p. 643-651) and index.
  • Other format: Also available in printed form ISBN 9783527406029
  • Reproduction available: Electronic reproduction. Askews and Holts. Mode of access: World Wide Web.
  • Mode of access: World Wide Web
  • English
  • Print version record.
Contents
  • Nuclear Physics of Stars; Contents; Preface; 1 Aspects of Nuclear Physics and Astrophysics; 1.1 History; 1.2 Nomenclature; 1.3 Solar System Abundances; 1.4 Astrophysical Aspects; 1.4.1 General Considerations; 1.4.2 Hertzsprung-Russell Diagram; 1.4.3 Stellar Evolution of Single Stars; 1.4.4 Binary Stars; 1.5 Masses, Binding Energies, Nuclear Reactions, and Related Topics; 1.5.1 Nuclear Mass and Binding Energy; 1.5.2 Energetics of Nuclear Reactions; 1.5.3 Atomic Mass and Mass Excess; 1.5.4 Number Abundance, Mass Fraction, and Mole Fraction; 1.5.5 Decay Constant, Mean Lifetime, and Half-Life
  • 1.6 Nuclear Shell Model1.6.1 Closed Shells and Magic Numbers; 1.6.2 Nuclear Structure and Nucleon Configuration; 1.7 Nuclear Excited States and Electromagnetic Transitions; 1.7.1 Energy, Angular Momentum, and Parity; 1.7.2 Transition Probabilities; 1.7.3 Branching Ratio and Mixing Ratio; 1.7.4 Gamma-Ray Transitions in a Stellar Plasma; 1.7.5 Isomeric States and the Case of 26Al; 1.8 Weak Interaction; 1.8.1 Weak Interaction Processes; 1.8.2 Energetics; 1.8.3 Beta-Decay Probabilities; 1.8.4 Beta-Decays in a Stellar Plasma; 2 Nuclear Reactions; 2.1 Cross Sections; 2.2 Reciprocity Theorem
  • 2.3 Elastic Scattering and Method of Partial Waves2.3.1 General Aspects; 2.3.2 Relationship Between Differential Cross Section and Scattering Amplitude; 2.3.3 The Free Particle; 2.3.4 Turning the Potential On; 2.3.5 Scattering Amplitude and Elastic Scattering Cross Section; 2.3.6 Reaction Cross Section; 2.4 Scattering by Simple Potentials; 2.4.1 Square-Well Potential; 2.4.2 Square-Barrier Potential; 2.4.3 Transmission Through the Coulomb Barrier; 2.5 Theory of Resonances; 2.5.1 General Aspects; 2.5.2 Logarithmic Derivative, Phase Shift, and Cross Section; 2.5.3 Breit-Wigner Formulas
  • 2.5.4 Extension to Charged Particles and Arbitrary Values of Orbital Angular Momentum2.5.5 R-Matrix Theory; 2.5.6 Experimental Tests of the One-Level Breit-Wigner Formula; 2.5.7 Partial and Reduced Widths; 2.6 Continuum Theory; 2.7 Hauser-Feshbach Theory; 3 Thermonuclear Reactions; 3.1 Cross Sections and Reaction Rates; 3.1.1 Particle-Induced Reactions; 3.1.2 Photon-Induced Reactions; 3.1.3 Abundance Evolution; 3.1.4 Forward and Reverse Reactions; 3.1.5 Reaction Rates at Elevated Temperatures; 3.1.6 Reaction Rate Equilibria; 3.1.7 Nuclear Energy Generation
  • 3.2 Nonresonant and Resonant Thermonuclear Reaction Rates3.2.1 Nonresonant Reaction Rates for Charged-Particle-Induced Reactions; 3.2.2 Nonresonant Reaction Rates for Neutron-Induced Reactions; 3.2.3 Nonresonant Reaction Rates for Photon-Induced Reactions; 3.2.4 Narrow-Resonance Reaction Rates; 3.2.5 Broad-Resonance Reaction Rates; 3.2.6 Electron Screening; 3.2.7 Total Reaction Rates; 4 Nuclear Physics Experiments; 4.1 General Aspects; 4.1.1 Charged-Particle Beams; 4.1.2 Neutron Beams; 4.2 Interaction of Radiation with Matter; 4.2.1 Interactions of Heavy Charged Particles
  • 4.2.2 Interactions of Photons
Related item
Genre
  • Bibliography
  • Electronic books.
  • Illustrated
  • text
Language
  • English
Contents
  • Machine generated contents note: 1.1. History -- 1.2. Nomenclature -- 1.3. Solar System Abundances -- 1.4. Astrophysical Aspects -- 1.4.1. General Considerations -- 1.4.2. Hertzsprung-Russell Diagram -- 1.4.3. Stellar Evolution of Single Stars -- 1.4.4. Binary Stars -- 1.5. Masses, Binding Energies, Nuclear Reactions, and Related Topics -- 1.5.1. Nuclear Mass and Binding Energy -- 1.5.2. Energetics of Nuclear Reactions -- 1.5.3. Atomic Mass and Mass Excess -- 1.5.4. Number Abundance, Mass Fraction, and Mole Fraction -- 1.5.5. Decay Constant, Mean Lifetime, and Half-Life -- 1.6. Nuclear Shell Model -- 1.6.1. Closed Shells and Magic Numbers -- 1.6.2. Nuclear Structure and Nucleon Configuration -- 1.7. Nuclear Excited States and Electromagnetic Transitions -- 1.7.1. Energy, Angular Momentum, and Parity -- 1.7.2. Transition Probabilities -- 1.7.3. Branching Ratio and Mixing Ratio -- 1.7.4. γ-Ray Transitions in a Stellar Plasma -- 1.7.5. Isomeric States and the Case of 26Al -- 1.8. Weak Interaction -- 1.8.1. Weak Interaction Processes -- 1.8.2. Energetics -- 1.8.3. β-Decay Probabilities -- 1.8.4. β-Decays in a Stellar Plasma -- Problems -- 2.1. Cross Sections -- 2.2. Reciprocity Theorem -- 2.3. Elastic Scattering and Method of Partial Waves -- 2.3.1. General Aspects -- 2.3.2. Relationship Between Differential Cross Section and Scattering Amplitude -- 2.3.3. Free Particle -- 2.3.4. Turning the Potential On -- 2.3.5. Scattering Amplitude and Elastic Scattering Cross Section -- 2.3.6. Reaction Cross Section -- 2.4. Scattering by Simple Potentials -- 2.4.1. Square-Well Potential -- 2.4.2. Square-Barrier Potential -- 2.4.3. Transmission Through the Coulomb Barrier -- 2.5. Theory of Resonances -- 2.5.1. General Aspects -- 2.5.2. Logarithmic Derivative, Phase Shift, and Cross Section -- 2.5.3. Breit[--]Wigner Formulas -- 2.5.4. Extension to Charged Particles and Arbitrary Values of Orbital Angular Momentum -- 2.5.5. R-Matrix Theory -- 2.5.6. Experimental Tests of the One-Level Breit[--]Wigner Formula -- 2.5.7. Partial and Reduced Widths -- 2.6. Continuum Theory -- 2.7. Hauser[--]Feshbach Theory -- Problems -- 3.1. Cross Sections and Reaction Rates -- 3.1.1. Particle-Induced Reactions -- 3.1.2. Photon-Induced Reactions -- 3.1.3. Abundance Evolution -- 3.1.4. Forward and Reverse Reactions -- 3.1.5. Reaction Rates at Elevated Temperatures -- 3.1.6. Reaction Rate Equilibria -- 3.1.7. Nuclear Energy Generation -- 3.2. Nonresonant and Resonant Thermonuclear Reaction Rates -- 3.2.1. Nonresonant Reaction Rates for Charged-Particle-Induced Reactions -- 3.2.2. Nonresonant Reaction Rates for Neutron-Induced Reactions -- 3.2.3. Nonresonant Reaction Rates for Photon-Induced Reactions -- 3.2.4. Narrow-Resonance Reaction Rates -- 3.2.5. Broad-Resonance Reaction Rates -- 3.2.6. Electron Screening -- 3.2.7. Total Reaction Rates -- Problems -- 4.1. General Aspects -- 4.1.1. Charged-Particle Beams -- 4.1.2. Neutron Beams -- 4.2. Interaction of Radiation with Matter -- 4.2.1. Interactions of Heavy Charged Particles -- 4.2.1.1. Stopping Power -- 4.2.1.2. Compounds -- 4.2.1.3. Energy Straggling -- 4.2.2. Interactions of Photons -- 4.2.2.1. Photoelectric Effect -- 4.2.2.2. Compton Effect -- 4.2.2.3. Pair Production -- 4.2.2.4. Photon Attenuation -- 4.2.3. Interactions of Neutrons -- 4.3. Targets and Related Equipment -- 4.3.1. Backings -- 4.3.2. Target Preparation -- 4.3.2.1. Evaporated and Sputtered Targets -- 4.3.2.2. Implanted Targets -- 4.3.2.3. Gas Targets -- 4.3.2.4. Target Thickness and Stability -- 4.3.3. Contaminants -- 4.3.4. Target Chamber and Holder -- 4.4. Radiation Detectors -- 4.4.1. General Aspects -- 4.4.2. Semiconductor Detectors -- 4.4.2.1. Silicon Charged-Particle Detectors -- 4.4.2.2. Germanium Photon Detectors -- 4.4.3. Scintillation Detectors -- 4.4.3.1. Inorganic Scintillator Photon Detectors -- 4.4.3.2. Organic Scintillator Charged-Particle and Neutron Detectors -- 4.4.4. Proportional Counters -- 4.4.5. Microchannel Plate Detectors -- 4.5. Nuclear Spectroscopy -- 4.5.1. Charged-Particle Spectroscopy -- 4.5.1.1. Energy Calibrations -- 4.5.1.2. Efficiencies -- 4.5.1.3. Elastic Scattering Studies -- 4.5.1.4. Nuclear Reaction Studies -- 4.5.2. γ-Ray Spectroscopy -- 4.5.2.1. Response Function -- 4.5.2.2. Energy Calibrations -- 4.5.2.3. Efficiency Calibrations -- 4.5.2.4. Coincidence Summing -- 4.5.2.5. Sum Peak Method -- 4.5.2.6. γ-Ray Branching Ratios -- 4.5.2.7. 4π Detection of 7-Rays -- 4.5.3. Neutron Spectroscopy -- 4.5.3.1. Response Function -- 4.5.3.2. Moderated Proportional Counters -- 4.5.3.3. Efficiency Calibrations -- 4.6. Miscellaneous Experimental Techniques -- 4.6.1. Radioactive Ion Beams -- 4.6.2. Activation Method -- 4.6.3. Time-of-Flight Technique -- 4.7. Background Radiation -- 4.7.1. General Aspects -- 4.7.2. Background in Charged-Particle Detector Spectra -- 4.7.3. Background in γ-Ray Detector Spectra -- 4.7.3.1. γγ-Coincidence Techniques -- 4.7.4. Background in Neutron Detector Spectra -- 4.8. Yields and Cross Sections for Charged-Particle-Induced Reactions -- 4.8.1. Nonresonant and Resonant Yields -- 4.8.1.1. Constant σ and epsilon Over Target Thickness -- 4.8.1.2. Moderately Varying γ and Constant epsilon Over Target Thickness -- 4.8.1.3. Breit[--]Wigner Resonance γ and Constant epsilon Over Resonance Width -- 4.8.2. General Treatment of Yield Curves -- 4.8.2.1. Target of Infinite Thickness -- 4.8.2.2. Target of Finite Thickness -- 4.8.3. Measured Yield Curves and Excitation Functions -- 4.8.4. Determination of Absolute Resonance Strengths and Cross Sections -- 4.8.4.1. Experimental Yields -- 4.8.4.2. Absolute Resonance Strengths and Cross Sections -- 4.8.4.3. Relative Resonance Strengths and Cross Sections -- 4.8.4.4. Determination of Resonance Strengths and Cross Sections Relative to Rutherford Scattering -- 4.9. Transmissions, Yields, and Cross Sections for Neutron-Induced Reactions -- 4.9.1. Resonance Transmission -- 4.9.2. Resonant and Nonresonant Yields -- 4.9.2.1. Constant σ Over Neutron Energy Distribution -- 4.9.2.2. Narrow Resonance with Γ <<ΔEn -- 4.9.3. Effective Cross Section -- 4.9.4. Measured Yields and Transmissions -- 4.9.5. Relative and Absolute Cross Sections -- Problems -- 5.1. Hydrostatic Hydrogen Burning -- 5.1.1. pp Chains -- 5.1.2. CNO Cycles -- 5.1.3. Hydrostatic Hydrogen Burning Beyond the CNO Mass Region -- 5.2. Hydrostatic Helium Burning -- 5.2.1. Helium-Burning Reactions -- 5.2.2. Nucleosynthesis During Hydrostatic He Burning -- 5.2.3. Other Helium-Burning Reactions -- 5.3. Advanced Burning Stages -- 5.3.1. Carbon Burning -- 5.3.2. Neon Burning -- 5.3.3. Oxygen Burning -- 5.3.4. Silicon Burning -- 5.3.5. Nuclear Statistical Equilibrium -- 5.4. Explosive Burning in Core-Collapse Supernovae (Type II, Ib, Ic) -- 5.4.1. Core Collapse and the Role of Neutrinos -- 5.4.2. v- and vp-Processes -- 5.4.3. Explosive Nucleosynthesis -- 5.4.4. Observations -- 5.5. Explosive Burning Involving Binary Stars -- 5.5.1. Explosive Burning in Thermonuclear Supernovae (Type Ia) -- 5.5.2. Explosive Hydrogen Burning and Classical Novae -- 5.5.3. Explosive Hydrogen-Helium Burning and Type IX-Ray Bursts -- 5.6. Nucleosynthesis Beyond the Iron Peak -- 5.6.1. s-Process -- 5.6.2. r-Process -- 5.6.3. p-Process -- 5.7. Non-stellar Processes -- 5.7.1. Big Bang Nucleosynthesis -- 5.7.2. Cosmic-Ray Nucleosynthesis -- 5.8. Origin of the Nuclides -- Problems -- A.1. Zero Orbital Angular Momentum and Constant Potential -- A.2. Arbitrary Orbital Angular Momentum and Zero Potential -- A.3. Arbitrary Orbital Angular Momentum and Coulomb Potential -- C.1. Relationship of Kinematic Quantities in the Laboratory Coordinate System -- C.2. Transformation Between Laboratory and Center-of-Mass Coordinate System -- D.1. General Aspects -- D.2. Pure Radiations in a Two-Step Process -- D.3. Mixed Radiations in a Two-Step Process -- D.4. Three-Step Process with Unobserved Intermediate Radiation -- D.5. Experimental Considerations -- D.6. Concluding Remarks -- E.1. Physical Constants and Data -- E.2. Mathematical Expressions

Summary

  • Thermonuclear reactions in stars is a major topic in the field of nuclear astrophysics, and deals with the topics of how precisely stars generate their energy through nuclear reactions, and how these nuclear reactions create the elements the stars, planets and - ultimately - we humans consist of. The present book treats these topics in detail. It also presents the nuclear reaction and structure theory, thermonuclear reaction rate formalism and stellar nucleosynthesis. The topics are discussed in a coherent way, enabling the reader to grasp their interconnections intuitively. The book serves bo

Summary holdings does not include live availability details. Select a library name for the full Holdings display.

Location of copy Shelfmark Online location Holdings Notes
University of Birmingham Libraries Online location
University of Birmingham Libraries: Main Library, Collection QB464 .I55
British Library: Science, Technology and Industry, St Pancras Reading Rooms (B) 523.8
British Library: Lending Collection m07/.18849
University of Cambridge Libraries: Moore Library: Main Library QB464 .I45 2007
University of Cambridge Libraries: Institute of Astronomy Library: Main Library 52/ILI
Coventry University Online location Wiley
University of Edinburgh Libraries Online location
University of Edinburgh Libraries Online location
Imperial College London Library: Central Library: Level 2 524.3 ILI
University of Leeds Library: Edward Boyle Library, level 11 Astronomy T-3 ILI
University of Liverpool Library: Harold Cohen Library, Ground Floor Rear (Book Zone 3) QB801.I21 6
University of Manchester Library: Main Library: Blue Area Floor 2 523.03
National Library of Scotland: General Reading Room, Edinburgh (stored offsite) PB8.207.598/2
National Library of Wales / Llyfrgell Genedlaethol Cymru: Contact the National Library of Wales / Llyfrgell Genedlaethol Cymru PRINT 2008 MB 7801
Open University Library: First Floor Open Shelves 523.8 ILI
Open University Library: First Floor Open Shelves
University of St Andrews Library Online location Connect to e-book (Simultaneous user access to this e-book may be limited because of licence restrictions)
University of St Andrews Library: J F Allen Library QB465.I65
University of Southampton Library EBSCOhost Online location An electronic book accessible through the World Wide Web; click for access
University of Southampton Library: Internet Internet
University of Strathclyde Library: Standard Loan MLD D 523.8 ILI
University of Surrey: High Demand Collection 523.0197 ILI
University of Surrey: Main Collection 523.0197 ILI
University of Surrey Online location
University of Surrey Online location
Trinity College Dublin Library: Santry Book Repository SPL-62-537
UCL Library Services: UCL Science Library PHYSICS EJ 21 ILI
University of Warwick Library Online location Connect to Wiley e-book
University of York Libraries Online location This is also available as an e-book from:
University of York Libraries: University Library: Morrell - Ordinary T 3.8 ILI
University of York Libraries Online location This is also available as an e-book from:
University of York Libraries Online location

Export: