Data mining : practical machine learning tools and techniques with Java implementations

Published
  • San Francisco, Calif. : Morgan Kaufmann 2000
Physical description
xxv, 371 pages ; 24 cm.
ISBN
  • 1558605525
  • 9781558605527
Notes
  • Both authors are from Waikato University.
  • Includes bibliographical references (pages 339-349) and index.
  • Source of acquisition: 2000/08/STR
Contents
  • 1 What's it all about? 1 -- 1.1 Data mining and machine learning 2 -- Describing structural patterns 4 -- Machine learning 5 -- Data mining 7 -- 1.2 Simple examples: The weather problem and others 8 -- Weather problem 8 -- Contact lenses: An idealized problem 11 -- Irises: A classic numeric dataset 13 -- CPU performance: Introducing numeric prediction 15 -- Labor negotiations: A more realistic example 16 -- Soybean classification: A classic machine learning success 17 -- 1.3 Fielded applications 20 -- Decisions involving judgment 21 -- Screening images 22 -- Load forecasting 23 -- Diagnosis 24 -- Marketing and sales 25 -- 1.4 Machine learning and statistics 26 -- 1.5 Generalization as search 27 -- Enumerating the concept space 28 -- Bias 29 -- 1.6 Data mining and ethics 32 -- 2 Input: Concepts, instances, attributes 37 -- 2.1 What's a concept? 38 -- 2.2 What's in an example? 41 -- 2.3 What's in an attribute? 45 -- 2.4 Preparing the input 48 -- Gathering the data together 48 -- Arff format 49 -- Attribute types 51 -- Missing values 52 -- Inaccurate values 53 -- Getting to know your data 54 -- 3 Output: Knowledge representation 57 -- 3.1 Decision tables 58 -- 3.2 Decision trees 58 -- 3.3 Classification rules 59 -- 3.4 Association rules 63 -- 3.5 Rules with exceptions 64 -- 3.6 Rules involving relations 67 -- 3.7 Trees for numeric prediction 70 -- 3.8 Instance-based representation 72 -- 3.9 Clusters 75 -- 4 Algorithms: The basic methods 77 -- 4.1 Inferring rudimentary rules 78 -- Missing values and numeric attributes 80 -- Discussion 81 -- 4.2 Statistical modeling 82 -- Missing values and numeric attributes 85 -- Discussion 88 -- 4.3 Divide and conquer: Constructing decision trees 89 -- Calculating information 93 -- Highly branching attributes 94 -- Discussion 97 -- 4.4 Covering algorithms: Constructing rules 97 -- Rules versus trees 98 -- A simple covering algorithm 98 -- Rules versus decision lists 103 -- 4.5 Mining association rules 104 -- Item sets 105 -- Association rules 105 -- Generating rules efficiently 108 -- Discussion 111 -- 4.6 Linear models 112 -- Numeric prediction 112 -- Classification 113 -- Discussion 113 -- 4.7 Instance-based learning 114 -- Distance function 114 -- Discussion 115 -- 5 Credibility: Evaluating what's been learned 119 -- 5.1 Training and testing 120 -- 5.2 Predicting performance 123 -- 5.3 Cross-validation 125 -- 5.4 Other estimates 127 -- Leave-one-out 127 -- Bootstrap 128 -- 5.5 Comparing data mining schemes 129 -- 5.6 Predicting probabilities 133 -- Quadratic loss function 134 -- Informational loss function 135 -- Discussion 136 -- 5.7 Counting the cost 137 -- Lift charts 139 -- ROC curves 141 -- Cost-sensitive learning 144 -- Discussion 145 -- 5.8 Evaluating numeric prediction 147 -- 5.9 Minimum description length principle 150 -- 5.10 Applying MDL to clustering 154 -- 6 Implementations: Real machine learning schemes 157 -- 6.1 Decision trees 159 -- Numeric attributes 159 -- Missing values 161 -- Pruning 162 -- Estimating error rates 164 -- Complexity of decision tree induction 167 -- From trees to rules 168 -- C4.5: Choices and options 169 -- Discussion 169 -- 6.2 Classification rules 170 -- Criteria for choosing tests 171 -- Missing values, numeric attributes 172 -- Good rules and bad rules 173 -- Generating good rules 174 -- Generating good decision lists 175 -- Probability measure for rule evaluation 177 -- Evaluating rules using a test set 178 -- Obtaining rules from partial decision trees 181 -- Rules with exceptions 184 -- Discussion 187 -- 6.3 Extending linear classification: Support vector machines 188 -- Maximum margin hyperplane 189 -- Nonlinear class boundaries 191 -- Discussion 193 -- 6.4 Instance-based learning 193 -- Reducing the number of exemplars 194 -- Pruning noisy exemplars 194 -- Weighting attributes 195 -- Generalizing exemplars 196 -- Distance functions for generalized exemplars 197 -- Generalized distance functions 199 -- Discussion 200 -- 6.5 Numeric prediction 201 -- Model trees 202 -- Building the tree 202 -- Pruning the tree 203 -- Nominal attributes 204 -- Missing values 204 -- Pseudo-code for model tree induction 205 -- Locally weighted linear regression 208 -- Discussion 209 -- 6.6 Clustering 210 -- Iterative distance-based clustering 211 -- Incremental clustering 212 -- Category utility 217 -- Probability-based clustering 218 -- EM algorithm 221 -- Extending the mixture model 223 -- Bayesian clustering 225 -- Discussion 226 -- 7 Moving on: Engineering the input and output 229 -- 7.1 Attribute selection 232 -- Scheme-independent selection 233 -- Searching the attribute space 235 -- Scheme-specific selection 236 -- 7.2 Discretizing numeric attributes 238 -- Unsupervised discretization 239 -- Entropy-based discretization 240 -- Other discretization methods 243 -- Entropy-based versus error-based discretization 244 -- Converting discrete to numeric attributes 246 -- 7.3 Automatic data cleansing 247 -- Improving decision trees 247 -- Robust regression 248 -- Detecting anomalies 249 -- 7.4 Combining multiple models 250 -- Bagging 251 -- Boosting 254 -- Stacking 258 -- Error-correcting output codes 260 -- 8 Nuts and bolts: Machine learning algorithms in Java 265 -- 8.2 Javadoc and the class library 271 -- Classes, instances, and packages 272 -- Weka.core package 272 -- Weka.classifiers package 274 -- Other packages 276 -- 8.3 Processing datasets using the machine learning programs 277 -- Using M5' 277 -- Generic options 279 -- Scheme-specific options 282 -- Classifiers 283 -- Meta-learning shemes 286 -- Filters 289 -- Association rules 294 -- Clustering 296 -- 8.4 Embedded machine learning 297 -- A simple message classifier 299 -- 8.5 Writing new learning schemes 306 -- An example classifier 306 -- Conventions for implementing classifiers 314 -- Writing filters 314 -- An example filter 316 -- Conventions for writing filters 317 -- 9 Looking forward 321 -- 9.1 Learning from massive datasets 322 -- 9.2 Visualizing machine learning 325 -- Visualizing the input 325 -- Visualizing the output 327 -- 9.3 Incorporating domain knowledge 329 -- 9.4 Text mining 331 -- Finding key phrases for documents 331 -- Finding information in running text 333 -- Soft parsing 334 -- 9.5 Mining the World Wide Web 335.
Other names
Related item
Genre
  • text
Language
  • English

Export: